‘In-Situ Gas Lift’ and ‘In-Situ Gas Injection’ Successfully Improve Oil Recovery in Arthit North Field

By

Waranon Laprabang, Supamittra Danpanich, Pithak Harnboonzong, Kanin Sapmanee, Visan Dechanuwong, Pichaya Ruthairung, Taweewat Prasertbordeekul, Muhammad Rinadi

11th International Conference on Mining, Material, and Petroleum Engineering
Chiangmai, Nov. 11-12, 2013
‘In-Situ Gas Lift’ and ‘In-Situ Gas Injection’ Successfully Improve Oil Recovery in Arthit North Field

Innovative and low-cost recovery improvement strategies implemented in PTTEP-Arthit North field oil rim

Generate a monetary benefit with a high profit to investment ratio

- do not require compressors and injection facilities
- little cost of perforations and a few days of operations
 - improve oil recovery factor twofold

Trouble-free speedy solution for engineers

- reactivate idle oil well and increase production
 - minimum operational downtime
- no obstruction for well intervention operation
'In-Situ Gas Lift’ and ‘In-Situ Gas Injection’ Successfully Improve Oil Recovery in Arthit North Field

In-Situ Gas Lift

(gas lifting energy to reinstate oil production from idle well AT-X-1)

- a one-shot perforation of a selected gas sand interval
 - supplying gas rate of 1.3 MMSCFD at bottom section of the well
 - aiming for an optimal producing GOR (1000-1400 scf/stb)
 - enhancing lift performance to revive the idle oil well
‘In-Situ Gas Lift’ and ‘In-Situ Gas Injection’ Successfully Improve Oil Recovery in Arthit North Field

In-Situ Gas Injection
(maintain pressure and improve recovery efficiency from a partially depleted oil sand)

- 440 meters distance from the in-situ gas injection source well (AT-X-2) to the producer well (AT-X-1)
 - correct flow rate of inflowing gas into the oil sand from a higher pressure gas sand
‘In-Situ Gas Lift’ and ‘In-Situ Gas Injection’ Successfully Improve Oil Recovery in Arthit North Field

In-Situ Gas Injection

- correct flow rate of in-situ gas injection into the oil sand
 - 3 MMSCFD and decline

- increase reservoir pressure
 - by 110 Psi after 30 days
- minimize pressure drop
‘In-Situ Gas Lift’ and ‘In-Situ Gas Injection’ Successfully Improve Oil Recovery in Arthit North Field

Importance for well AT-X-1 performance

- reactivate idle well
- accelerate production rate
- preserve energy and improve oil recovery factor

![Graph showing oil rate (BOPD) over time with different stages: Natural Flow, Ceased Flow (insufficient GOR), Planned Shut Down, In-Situ Gas Lift (revive well), In-Situ Gas Dump Flood (accelerate production), and Higher Oil Rate Post Shut Down.](image-url)
‘In-Situ Gas Lift’ and ‘In-Situ Gas Injection’ Successfully Improve Oil Recovery in Arthit North Field

Contributing factors for successful oil recovery improvement (field case of well AT-X-1)

• a useful source for in-situ gas lift
 o one-shot perforation of a selected gas sand interval with a correct in-situ gas lift rate that revives the well
 o gas injection point that is deeper than the oil sand

• discontinuous in-situ gas lift favorable for moderate well PI and a pressure supported oil sand with high remaining oil in-place
‘In-Situ Gas Lift’ and ‘In-Situ Gas Injection’ Successfully Improve Oil Recovery in Arthit North Field

Contributing factors for successful oil recovery improvement (field case of well AT-X-1) (cont.)

- permeable channel sand that exhibits a relatively better quality at bottom and poorer quality at top that is good for in-situ gas injection
‘In-Situ Gas Lift’ and ‘In-Situ Gas Injection’ Successfully Improve Oil Recovery in Arthit North Field

Contributing factors for successful oil recovery improvement (field case of well AT-X-1) (cont.)

- correct flow rate of in-situ gas injection that fits for
 - partially depleted oil sand with solution gas drive mechanism
 - oil gross-bulk volume of under 10,000 acre-feet with high API oil
 - 440 meters distance from AT-X-2 to AT-X-1

- in-situ gas injection as external gas drive that
 - supplements reservoir pressure and minimizes pressure drop
 - improves displacement efficiency by gravity segregation mechanism
‘In-Situ Gas Lift’ and ‘In-Situ Gas Injection’ Successfully Improve Oil Recovery in Arthit North Field

Conclusions

• preserves energy and enhances gravity segregation drive efficiency in a solution gas drive oil sand that accelerates oil production

• innovative, simple and low-cost strategy that reactivates idle well and improves oil recovery thus is constructive and valuable to E&P industry in Thailand
‘In-Situ Gas Lift’ and ‘In-Situ Gas Injection’ Successfully Improve Oil Recovery in Arthit North Field

Thank You